An Adaptive Energy Management System Using Heterogeneous Sensor/Actuator Networks
نویسندگان
چکیده
Global energy consumption has been increasing over the past half century, mainly due to increasing populations and economic development around the world. Although the development of low-consumption appliances, highly efficient heat pump systems (such as Ecocute), and smart meters that identify consumption in more detail than conventional meters contribute in no small part to reducing the emission of greenhouse gases in homes and office buildings, it is important to understand that the rapid growth in ubiquitous comfort services is resulting in higher power consumption. In the future, there may be more convenient appliances coming on the market to create a ubiquitous smart infrastructure. Even though individual appliances might be ultra-low power, the amount of energy consumption in buildings will increase as the number of these appliances increases. There has been research in the field of home/building energy management systems (HEMS/BEMS) (Cao et al., 2006; Inoue et al., 2003; Kushiro et al., 2003; Zhao et al., 2010), but integrating new devices on the market is not easy. Moreover, it is difficult to develop appropriate systems for different lifestyles. For example, a building's carbon footprint is the product of complex interplay between the buildings' structural and infrastructure characteristics, operational patterns and business processes, weather and climate dynamics, energy sources, and workforce commute patterns. Because these disparate factors can change daily, any recommendation based on a snapshot will rapidly become invalid. Therefore, we believe the key feature of next-generation HEMS/BEMS is adaptability. If the systems are able to use information from multi-vendor sensors/actuators in heterogeneous networks, we can develop more adaptable energy management systems for visualizing and controlling the living climate appropriately. We feel this would enable us to create ubiquitous services for a more convenient, eco-friendly lifestyle. We have developed an adaptive energy management system (A-EMS) for controlling energy consumption by converging heterogeneous networks (Mineno et al., 2010) such as power line communications (PLC), Wi-Fi networks, ZigBee, and future sensor networks. We created a prototype system that enables users to freely configure a cooperative network of sensors and home appliances from a mobile device. Although there are many similar technologies for integrating multi-vendor devices (IEEE 1451; Sensor Model Language; Device Kit; Chen, et al., 2009), we used P2P Universal Computing Consortium (PUCC)
منابع مشابه
Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملA novel key management scheme for heterogeneous sensor networks based on the position of nodes
Wireless sensor networks (WSNs) have many applications in the areas of commercial, military and environmental requirements. Regarding the deployment of low cost sensor nodes with restricted energy resources, these networks face a lot of security challenges. A basic approach for preparing a secure wireless communication in WSNs, is to propose an efficient cryptographic key management protocol be...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملToward an energy efficient PKC-based key management system for wireless sensor networks
Due to wireless nature and hostile environment, providing of security is a critical and vital task in wireless sensor networks (WSNs). It is known that key management is an integral part of a secure network. Unfortunately, in most of the previous methods, security is compromised in favor of reducing energy consumption. Consequently, they lack perfect resilience and are not fit for applications ...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012